Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; : e0292922, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36975999

RESUMEN

We established wastewater surveillance of SARS-CoV-2 in a small, residential, urban college as part of an integrated public health response during the COVID-19 pandemic. Students returned to campus in spring 2021. During the semester, students were required to perform nasal PCR tests twice weekly. At the same time, wastewater monitoring was established in 3 campus dormitory buildings. Two were dedicated dormitories with populations of 188 and 138 students; 1 was an isolation building where students were moved within 2 h of receiving positive test results. Analysis of wastewater from isolation indicated that the amount of viral shedding was highly variable and that viral concentration could not be used to estimate the number of cases at the building level. However, rapid movement of students to isolation enabled determination of predictive power, specificity, and sensitivity from instances in which generally one positive case at a time occurred in a building. Our assay yields effective results with an ~60% positive predictive power, ~90% negative predictive power, and ~90% specificity. Sensitivity, however, is low at ~40%. Detection is improved in the few instances of 2 simultaneous positive cases, with sensitivity of 1 case versus 2 cases increasing from ~20% to 100%. We also measured the appearance of a variant of concern on campus and noted a similarity in timeline with increased prevalence in surrounding New York City. Monitoring SARS-CoV-2 in the sewage outflow of individual buildings can be used with a realistic goal of containing outbreak clusters but not necessarily single cases. IMPORTANCE Diagnostic testing of sewage can detect levels of circulating viruses to help inform public health. Wastewater-based epidemiology has been particularly active during the COVID-19 pandemic to measure the prevalence of SARS-CoV-2. Understanding the technical limitations of diagnostic testing for individual buildings would help inform future surveillance programs. We report our diagnostic and clinical data monitoring of buildings on a college campus in New York City during the spring 2021 semester. Frequent nasal testing, mitigation measures, and public health protocols provided a context in which to study the effectiveness of wastewater-based epidemiology. Our efforts could not consistently detect individual positive COVID-19 cases, but sensitivity is significantly improved in detecting two simultaneous cases. We therefore contend that wastewater surveillance may be more practically suited for the mitigation of outbreak clusters.

2.
Eur J Hum Genet ; 31(6): 638-647, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36788145

RESUMEN

Age-related (AR) hearing loss (HL) is a prevalent sensory deficit in the elderly population. Several studies showed that common variants increase ARHL susceptibility. Here, we demonstrate that rare-variants play a crucial role in ARHL etiology. We analyzed exome and imputed data from white-European UK Biobank volunteers, performing both single-variant and rare-variant aggregate association analyses using self-reported ARHL phenotypes. We identified and replicated associations between ARHL and rare-variants in KLHDC7B, PDCD6, MYO6, SYNJ2, and TECTA. PUS7L and EYA4 also revealed rare-variant associations with ARHL. EYA4, MYO6, and TECTA are all known to underline Mendelian nonsyndromic HL. PDCD6, a new HL gene, plays an important role in apoptosis and has widespread inner ear expression, particularly in the inner hair cells. An unreplicated common variant association was previously observed for KHLDC7B, here we demonstrate that rare-variants in this gene also play a role in ARHL etiology. Additionally, the first replicated association between SYNJ2 and ARHL was detected. Analysis of common variants revealed several previously reported, i.e., ARHGEF28, and new, i.e., PIK3R3, ARHL associations, as well as ones we replicate here for the first time, i.e., BAIAP2L2, CRIP3, KLHDC7B, MAST2, and SLC22A7. It was also observed that the odds ratios for rare-variant ARHL associations, were higher than those for common variants. In conclusion, we demonstrate the vital role rare-variants, including those in Mendelian nonsyndromic HL genes, play in the etiology of ARHL.


Asunto(s)
Presbiacusia , Anciano , Humanos , Presbiacusia/genética , Transactivadores , Proteínas de Unión al Calcio , Proteínas Reguladoras de la Apoptosis , Fosfatidilinositol 3-Quinasas
3.
Hum Mol Genet ; 32(7): 1184-1192, 2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36355422

RESUMEN

Congenital hearing impairment (HI) is a genetically highly heterogeneous disorder in which prompt recognition and intervention are crucial to optimize outcomes. In this study, we used exome sequencing to investigate a large consanguineous Pakistani family with eight affected individuals showing bilateral severe-to-profound HI. This identified a homozygous splice region variant in STX4 (c.232 + 6T>C), which causes exon skipping and a frameshift, that segregated with HI (two-point logarithm of odds (LOD) score = 5.9). STX4, a member of the syntaxin family, is a component of the SNARE machinery involved in several vesicle transport and recycling pathways. In silico analysis showed that murine orthologue Stx4a is highly and widespread expressed in the developing and adult inner ear. Immunofluorescent imaging revealed localization of STX4A in the cell body, cell membrane and stereocilia of inner and outer hair cells. Furthermore, a morpholino-based knockdown of stx4 in zebrafish showed an abnormal startle response, morphological and developmental defects, and a disrupted mechanotransduction function in neuromast hair cells measured via FM1-43 uptake. Our findings indicate that STX4 dysfunction leads to HI in humans and zebrafish and supports the evolutionary conserved role of STX4 in inner ear development and hair cell functioning.


Asunto(s)
Mecanotransducción Celular , Pez Cebra , Adulto , Humanos , Animales , Ratones , Pez Cebra/genética , Proteínas Qa-SNARE/genética , Audición/genética , Células Ciliadas Auditivas Externas
4.
Commun Biol ; 5(1): 369, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35440622

RESUMEN

We investigated hearing impairment (HI) in 51 families from Ghana with at least two affected members that were negative for GJB2 pathogenic variants. DNA samples from 184 family members underwent whole-exome sequencing (WES). Variants were found in 14 known non-syndromic HI (NSHI) genes [26/51 (51.0%) families], five genes that can underlie either syndromic HI or NSHI [13/51 (25.5%)], and one syndromic HI gene [1/51 (2.0%)]. Variants in CDH23 and MYO15A contributed the most to HI [31.4% (16/51 families)]. For DSPP, an autosomal recessive mode of inheritance was detected. Post-lingual expression was observed for a family segregating a MARVELD2 variant. To our knowledge, seven novel candidate HI genes were identified (13.7%), with six associated with NSHI (INPP4B, CCDC141, MYO19, DNAH11, POTEI, and SOX9); and one (PAX8) with Waardenburg syndrome. MYO19 and DNAH11 were replicated in unrelated Ghanaian probands. Six of the novel genes were expressed in mouse inner ear. It is known that Pax8-/- mice do not respond to sound, and depletion of Sox9 resulted in defective vestibular structures and abnormal utricle development. Most variants (48/60; 80.0%) have not previously been associated with HI. Identifying seven candidate genes in this study emphasizes the potential of novel HI genes discovery in Africa.


Asunto(s)
Exoma , Pérdida Auditiva , Animales , Cadherinas/genética , Ghana , Pérdida Auditiva/genética , Humanos , Proteína 2 con Dominio MARVEL/genética , Ratones , Mutación , Miosinas , Secuenciación del Exoma/métodos
5.
Eur J Hum Genet ; 30(1): 22-33, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34135477

RESUMEN

Hearing impairment (HI) is a common disorder of sensorineural function with a highly heterogeneous genetic background. Although substantial progress has been made in the understanding of the genetic etiology of hereditary HI, many genes implicated in HI remain undiscovered. Via exome and Sanger sequencing of DNA samples obtained from consanguineous Pakistani families that segregate profound prelingual sensorineural HI, we identified rare homozygous missense variants in four genes (ADAMTS1, MPDZ, MVD, and SEZ6) that are likely the underlying cause of HI. Linkage analysis provided statistical evidence that these variants are associated with autosomal recessive nonsyndromic HI. In silico analysis of the mutant proteins encoded by these genes predicted structural, conformational or interaction changes. RNAseq data analysis revealed expression of these genes in the sensory epithelium of the mouse inner ear during embryonic, postnatal, and adult stages. Immunohistochemistry of the mouse cochlear tissue, further confirmed the expression of ADAMTS1, SEZ6, and MPDZ in the neurosensory hair cells of the organ of Corti, while MVD expression was more prominent in the spiral ganglion cells. Overall, supported by in silico mutant protein analysis, animal models, linkage analysis, and spatiotemporal expression profiling in the mouse inner ear, we propose four new candidate genes for HI and expand our understanding of the etiology of HI.


Asunto(s)
Proteína ADAMTS1/genética , Carboxiliasas/genética , Pérdida Auditiva Sensorineural/genética , Proteínas de la Membrana/genética , Proteína ADAMTS1/química , Proteína ADAMTS1/metabolismo , Animales , Carboxiliasas/química , Carboxiliasas/metabolismo , Femenino , Genes Recesivos , Células Ciliadas Auditivas/metabolismo , Pérdida Auditiva Sensorineural/patología , Humanos , Masculino , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Ratones , Mutación , Linaje , Dominios Proteicos
7.
J Hum Genet ; 66(10): 1009-1018, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33879837

RESUMEN

BACKGROUND: Wolfram syndrome (WFS) is characterized by deafness, diabetes mellitus, and diabetes insipidus along with optic atrophy. WFS has an autosomal recessive mode of inheritance and is due to variants in WFS1 and CISD2. METHODS: We evaluated the underlying molecular etiology of three affected members of a consanguineous family with hearing impairment, bicuspid aortic valve, diabetes mellitus and insipidus, clinodactyly, and gastrointestinal tract abnormalities via exome sequencing approach. We correlated clinical and imaging data with the genetic findings and their associated phenotypes. RESULTS: We identified a homozygous missense variant p.(Asn1097Lys) in CDK13, a gene previously associated with autosomal dominant congenital heart defects, dysmorphic facial features, clinodactyly, gastrointestinal tract abnormalities, intellectual developmental disorder, and seizures with variable phenotypic features. CONCLUSION: We report a homozygous variant in CDK13 and suggest that this gene causes an autosomal recessive disorder with hearing impairment, bicuspid aortic valve, diabetes mellitus and insipidus, clinodactyly, and gastrointestinal tract abnormalities.


Asunto(s)
Proteína Quinasa CDC2/genética , Sordera/genética , Predisposición Genética a la Enfermedad , Atrofia Óptica/genética , Síndrome de Wolfram/genética , Adolescente , Adulto , Enfermedad de la Válvula Aórtica Bicúspide/genética , Enfermedad de la Válvula Aórtica Bicúspide/patología , Niño , Preescolar , Consanguinidad , Sordera/complicaciones , Sordera/patología , Diabetes Mellitus/genética , Femenino , Tracto Gastrointestinal/anomalías , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/patología , Pérdida Auditiva , Homocigoto , Humanos , Lactante , Masculino , Mutación Missense/genética , Atrofia Óptica/complicaciones , Atrofia Óptica/patología , Síndrome de Wolfram/complicaciones , Síndrome de Wolfram/epidemiología , Síndrome de Wolfram/patología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...